Community Discovery in Social Networks via Heterogeneous Link Association and Fusion

نویسندگان

  • Lei Meng
  • Ah-Hwee Tan
چکیده

Discovering social communities of web users through clustering analysis of heterogeneous link associations has drawn much attention. However, existing approaches typically require the number of clusters a prior, do not address the weighting problem for fusing heterogeneous types of links and have a heavy computational cost. In this paper, we explore the feasibility of a newly proposed heterogeneous data clustering algorithm, called Generalized Heterogeneous Fusion Adaptive Resonance Theory (GHF-ART), for discovering communities in heterogeneous social networks. Different from existing algorithms, GHF-ART performs real-time matching of patterns and one-pass learning which guarantee its low computational cost. With a vigilance parameter to restrain the intra-cluster similarity, GHF-ART does not need the number of clusters a prior. To achieve a better fusion of multiple types of links, GHF-ART employs a weighting function to incrementally assess the importance of all the feature channels. Extensive experiments have been conducted to analyze the performance of GHF-ART on two heterogeneous social network data sets and the promising results comparing with existing methods demonstrate the effectiveness and efficiency of GHF-ART.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Link Prediction Method Based on Learning Automata in Social Networks

Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...

متن کامل

Valuing Indirect Citations in Citation Networks using Data Fusion

Any scientific activity requires awareness of previous related activities. Citation networks are the networks in which each document is compared as a link of a chain with its previous and next documents, and the documents with the highest number of citations are considered as the most effective ones in a domain. Most of the introduced methods use direct citations for valuing the documents. One ...

متن کامل

The Association between Use of Virtual Social Networks and Social Isolation among High School Girls in Shahrekord

The Association between Use of Virtual Social Networks and Social Isolation among High School Girls in Shahrekord   K. Karimian [1] M. Parsamehr, Ph.D. [2] S.A.R. Afshani, Ph.D. [3]   This study [4] sought to examine the association between use of virtual social networks and social isolation among high school girls in Shahrekord. The research method was survey. The statistical population ...

متن کامل

Adaptive Candidate Generation for Scalable Edge-discovery Tasks on Data Graphs

Several ‘edge-discovery’ applications over graph-based data models are known to have worst-case quadratic complexity, even if the discovered edges are sparse. One example is the generic link discovery problem between two graphs, which has invited research interest in several communities. Specific versions of this problem include link prediction in social networks, ontology alignment between met...

متن کامل

Overlapping Community Detection in Social Networks Based on Stochastic Simulation

Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014